データサイエンス・ブートキャンプ
シリコンバレーから日本上陸!
データサイエンスの手法をプログラミングすることなしに基礎から体系的に学び、それを実際の業務で使えるレベルのスキルをつけていただきます。
現在、2019年1月に開催予定のトレーニングの受付をしております。詳細は下記にあります開催要項を御覧ください。

データサイエンス・ブートキャンプ・トレーニングの説明会/Q&Aを録画したものがこちらにありますのでよろしければ見てみてください。

また、オンサイトでのブートキャンプ・トレーニングも15名以上より受け付けております。興味のある方はこちら までご連絡ください。
なぜ今、データサイエンスのトレーニングなのか?
現在、アメリカのシリコンバレーを主な拠点とする Google, Facebook, Amazon, Airbnb, Uber, Instacart といった勝ち組となっているテクノロジー関連の会社は、データの集め方だけでなく、それを効率よく分析し、そこから得た情報をすべての業務、すべてのレベルでの意思決定のプロセスに積極的に活用することで、そうでない会社、つまりはデータはあるものの使いきれていないため、結局はカンと経験に頼っている会社との差を、会社の業績、マーケットシェア、市場価値など、あらゆる点でますます広げていっています。
そういった先進的な会社では、様々なタイプのデータを自由自在に操り、その時々のニーズに合った最適なアルゴリズムを使いこなしてデータを効率よく素早く分析し、さらにはそこから実際の業務の改善、もしくは新しいビジネスの機会の発見に役立つ情報を抽出し、意味のある行動を提案していくことのできるデータ・サイエンティストの方達が日々活躍しています。アメリカでは今現在、最もセクシーな職種と言われてるデータ・サイエンティストですが、その給料がGoogleやFacebookなどでは2000万円を超え、シニア・レベルだと5000万円を超えるほどに高騰していることからもわかるように、データ・サイエンティストたちに対する需要は日々高まる一方です。
そういったデータ・サイエンティストを中心としたデータ分析に携わっている方たちの間で、広く使われているデータサイエンスのためのプログラミング言語にR(アール)言語というものがあります。一般には統計言語ということで聞いたことがある方も多いかと思いますが、最近では、機械学習、データの加工と可視化などの分野で飛躍的に発展を遂げ、データサイエンスのあらゆる分野で幅広く使われています。しかしこちらは、プログラミング言語ということで、習得するにはそれなりのプログラミングのスキルが必要とされるため、広く一般に活用していくにはハードルが高いというのが現実です。
本トレーニングでは、前出の会社など多くの会社で、データサイエンティストを含め、データの分析に携わる方たちに現在広く使われている、R言語のUIとして人気のあるExploratoryを使って、プログラミングをすることなしに、R言語の凄さに触れながら、実際にデータ・サイエンティストたちが行っているデータ分析の手法を、基礎から学び、さらには実際のビジネスで使えるレベルまで一気に習得してしまおうとするものです。
他にあるデータサイエンス、分析関連のトレーニングと何が違うのか?
一般にあるデータサイエンスもしくは機械学習のトレーニングクラスと違い、データ加工、分析に関わるすべてのオペレーションは、Exploratory上のシンプルなUIを通して行うので、プログラミングの基礎の理解、さらにはプログラミングスキルの習得のための時間はゼロになります。ですので、受講中は100%データサイエンスの手法、さらにはそれをどう実際のビジネスに影響を与えることができるのかを、実際に手を動かしながら学んでいくということにフォーカスすることができます。ExploratoryのUIを通じて行った作業は、すべてR言語のコマンド/関数に自動的に変換することができますので、その後独立したR環境でも実行が可能です。ですので、ベンダーのツールを使ったトレーニングにありがちな、いわゆるベンダー・ロックインという心配もありません。
トレーニングを通してデータ分析の最先端にいるデータ・サイエンティストが実際に日々の業務で使っている多数のR言語の関数やパッケージにも触れることになるので、プログラミングすることなしにR言語がどういった言語なのか、どう動くのか、どのように実際使われているのかを効率良く理解し、使いこなしていくスキルの方も身につけていくことができます。
このトレーニングの最終的なゴールはデータサイエンスという知識の習得だけではなく、データサイエンスに於けるデータ分析の手法を使って、実際にビジネスの現場での日々の問題を解決していくことのできる即効性のあるスキルを身につけていただくことにあります。
トレーニングで使われる教材とツール
トレーニングの教材は、Exploratory社が、米Facebook本社やカリフォルニア大学バークレー校、サンフランシスコ州立大学などで行っているデータ分析・ブートキャンプ・トレーニングの一環で使っているものをベースに、日本でのニーズに合わせて改善したものになっています。
カリフォルニア大学バークレー校でのトレーニングの様子
トレーニングで使用するR言語のUIツールであるExploratoryは、トレーニング後も1年分の使用ライセンスが無償で提供されますので、トレーニングで身につけたデータサイエンスのスキルを実際の業務でさっそく生かしていくことができます。さらに、1年分の使用ライセンスとともにサポートの方も付いてきますので、現場で使っていくうちに出てくるであろう質問などにもExploratory社のスタッフ、もしくはExploratoryのユーザ・コミュニティが素早く対応いたします。実際のビジネスの課題を現実のデータを使って、日々解決していくことでさらなるスキルの向上が期待されます。
このトレーニングに向いている方
  • データ・サイエンティストとして、キャリア・チェンジをしてみたいと思っている方。
  • 現在の業務もしくは研究にデータサイエンスの手法を取り入れることによって、さらなる改善を目指したい方。
  • データ分析を本格的に、さらには体系的に学んでみたいと思っている方。
  • データサイエンス、機械学習、統計学などに興味はあったが、敷居が高いとうことで、躊躇していた方。
  • 以前よりR言語に興味があったが、プログラミングは苦手もしくは興味ないので諦めていた方。
開催要項
このトレーニングは、朝9時から夕方6時までの3日間コースになります。
日時 :
  • 週末版: 2019年1月19(土), 20(日), 26(土)
  • 平日版: 2019年1月23(水), 24(木), 25(金)
    1月平日版は定員に達したため、受付は終了致しました。

    1月平日版のトレーニングのキャンセル待ちリストへの登録をご希望の方、または、次回のトレーニング募集開始のお知らせを希望の方は、 こちらまでお問い合わせください。
主催: Exploratory, Inc.
会場: T’s渋谷フラッグカンファレンスセンター (変更の可能性あり)
会場: 東京都渋谷区宇田川町33-6 Shibuya Flag 8F
受講定員: 22名(最小履行予定数10名)
受講料(税別): 198,000円

(教材費・1年分のExploratory使用ライセンス込み - 50,000円相当)
3名以上まとめてお申込みの場合にはグループ割引があります。詳しくは下記お問い合わせ先までご連絡ください。
受付締め切り: 12月31日 (定員になり次第、受付を終了いたします)
キャンセル料:
  • 実施の15日前以降: 受講料の20%
  • 実施の7日前以降: 受講料の50%
  • 実施の3日前以降: 受講料の100%
受講資格: 特に前提になる条件などはありません。データ分析、統計学などの経験のない方でも、強く学びたいという意識のある方であれば、どなたでも歓迎です。参加には、Mac(OSX 10.11以降)か、Windows(Windows7以降)のノートPC(無線LAN対応)の持参が必要になります。
お問い合わせ先: 画面右下の緑色のチャットアイコンを押してチャットでお問い合わせいただくか、support@exploratory.io までメールにてお問い合わせください。
タイムテーブル
1日目
9:00 - 12:00
  • データサイエンスとは何か
  • データを分析、理解するための統計の基礎
  • データの可視化
    • 集計、分散データの可視化
    • トレンドとパターンを学ぶための可視化
    • 地理データの可視化
    • 時系列データの可視化
13:00 - 18:00 
  • 探索的データ分析
    • 汚いデータからきれいなデータへ、さらに付加価値のついたデータへ
      • データの検証 - NA (Not Available、欠損値), Outlier(異常値、外れ値), Distribution(分布)
      • 時系列データの加工
      • テキストデータの加工
      • カテゴリカル(分類)・データの加工
      • データの標準化、正規化
      • 複数のデータセットを結合
2日目
9:00 - 12:00
  • 機械学習/統計モデリング - パート 1
    • 相関と距離のアルゴリズムを使った分析
    • 多次元尺度構成法分析 - 性質の似ている地域、都市、国を視覚的に探す
    • クラスタ分析 - 効果的なキャンペーンのための顧客セグメンテーション
13:00 - 18:00 
  • 機械学習/統計モデリング - パート 2
    • 機械学習101 - AI/機械学習の基本
    • 線形回帰、ロジスティック回帰を使った探索的分析
    • ランダムフォレストを使った変数重要度と要因分析
3日目
9:00 - 12:00
  • 機械学習/統計モデリング - パート 3
    • 生存曲線を使った生存分析 - コホート分析、カスタマー・リテンション分析
    • Cox回帰を使った生存分析 - A-ha momentの要因分析
    • 時系列データ分析 - フォーキャスト(予測) - 売上、需要、ウェブページへのアクセスの予測
13:00 - 17:00 
  • 実践編 / ケース・スタディ
  • 前日までに学んだ様々なデータサイエンスの手法を使ってビジネスデータを実際に分析することで、これまで点であったものを線としてつなぎ、明日から使える自分のスキルとする。
    • スーパーの売上責任者として、これまでの顧客の購買データをもとに、何が売上を伸ばすことに影響するのかを理解し、売上向上のための戦略を提案する。
    • あるオンライン・サービスのプロダクトマネージャーとして、これまでの過去の顧客のアクティビティデータより、何が顧客のキャンセル、もしくはリテンションに影響するのかを理解し、顧客のリテンションを上げるための戦略を提案する。
17:00 - 18:00 
  • 総括
  • Q&A
講師
西田勘一郎 (CEO, Exploratory) Twitter
米オラクル本社で、16年にわたりデータサイエンスの開発チームを率い、機械学習、ビッグ・データ、ビジネス・インテリジェンス、データベースに関する数多くの製品を世に送り出すかたわら、世界中の企業へのトレーニング、コンサルテーションを通してデータ・ドリブンなビジネスを可能にするテクノロジーの民主化に努める。2016年初頭に、オープンソースの世界で起きているデータサイエンスの革新的な進歩を、世界の99%のプログラミングをしない人たちのもとへ届けるというビジョンのもと、Exploratory, Inc を立ち上げる。現在はExploratory, Inc.でCEO兼チーフ・プロダクト・オフィサーを務めるかたわら、データサイエンス・ブートキャンプ・トレーニング、日本でのデータサイエンス勉強会などの場を通してシリコンバレーで行われている最先端のデータサイエンスの世界への普及と教育に取り組む。
これまでの受講者の声

とても有意義な3日間でした。本などで読んでかじっていた小難しい理論でしたが、プログラミングを省いて素人の私でも分析ができることがとても楽しかったです。アナリティクスにはまることができそうです。

山田修平 /マーケティング / 富士通

【日本版第5回参加者】

生のデータを使って実際に手を動かしながらフローを体験でき、実践に役立つノウハウを得ることができました。3日間の期間でしたが、Exploratoryを使用し短いサイクルで試行錯誤を繰り返せることで、非常に密度が濃い時間を過ごせました。

エンジニア / ITシステム開発会社

【日本版第5回参加者】

業務上、数字を見ることが多くデータサイエンスの分野に興味があり参加させていただきました。3日間で計27時間というハードなブートキャンプ。という印象がありましたが参加してみると全くの素人の自分でも楽しく取り組むことができ、『すごい武器を手に入れた感』を感じました。そして、終始和やかなムードであっという間の3日間を過ごさせていただきました。最後に、このブートキャンプに参加して頂ければExploratoryというプロダクトそしてこの会社の大ファンになることを保証します(笑)

石野 / エンターテイメント企業

【日本版第5回参加者】

非常に満足度の高いトレーニングでした。

最近、AIや機械学習といったワードが飛び交い、データサイエンス技術やデータサイエンティストが重要視されています。 私自身、機械学習に興味を持ち学習を始め、データサイエンスの重要さと難しさを実感していたところで、本トレーニングに出会いました。 本トレーニングで、データサイエンス活用業務を遂行できるように学習カリキュラムが練られており、様々なデータを様々な手法で分析しました。

エンジニアとは少し違った角度から見える「データの姿」に触れることができ、データサイエンティストのタスクとはどんなものか、ということを実感できました。どう上手く機械学習を適用すると皆ハッピーか?ではなく、どう上手くデータを活用すると皆ハッピーか?がわかるトレーニングだったと感じております。

まだまだスタート地点ですが、ブログやウェブセミナーを交えたアフターフォローも充実しているので、今後もデータ活用のエキスパートとなるべく精進したいと思います。

研究開発室 / IT システム開発会社

【日本版第5回参加者】

可視化ツールとR言語の中間のようなツールを探していましたがExploratoryがまさにそれでした! データサイエンスを日々の業務で活かすハードルがぐっと下がります! データの把握、可視化、分析、モデリングの流れを一通り経験でき大変勉強になりました。 様々な業界から集まった方々との交流も貴重な体験となりました。

マーケティング / ソフトウエアベンダー

【日本版第5回参加者】

Exploratoryの使い方といったものではなく、本質的なデータサイエンスについて学べたことが大変有意義でした。統計についての講義が一番わかりやすかったです。
河邑亮太 / 商社

【日本版第5回参加者】

「データ分析を行うには、まずプログラミングから」という固定観念を打破してくれました。今すぐにデータ分析を行いたい人にお薦めです。

(トレーニングの大半が生のデータを使っての実戦形式なので、一連のデータサイエンス・ワークフローがこのトレーニングだけで身に付きます。)

娯楽産業 / 社長室秘書

【日本版第3回参加者】

私は全く現段階ではデータ分析の経験がない状態で参加しました。 「データ分析を行う上での8割は前処理に費やされる」など一般的に言われますが、実際のデータ分析を研修で行うことでその大変さ、やる意味・気をつけるポイントなどを伺い知ることができました。
野村総合研究所 / 営業

【日本版第3回参加者】

Rもわからず統計もわからずという何のバッグラウンドもない状態でしたが、気持ちだけで参加しました。そのような状態でも、ExploratoryというUIツールのおかげですんなりとデータ分析の世界に飛び込めました。

ブートキャンプは、Exploratoryを実際に使用して具体的なデータ分析を行いながら進めていくので、本で学習するより100倍わかりやすく、自分がわからない部分もクリアになります。 Rなどの言語が障害になりデータ分析に一歩踏み出せない方に特にオススメと思います。間違いなくデータ分析に関する視野が広がります。

渡辺英樹 / 卸売業(東証一部上場) 事業戦略本部 

【日本版第3回参加者】

実業務に応用できる最新の手法や考え方を、初学者でもわかる言葉に翻訳しながら解説してくれる素晴らしいトレーニングでした。土日で学べる手軽さもありながら、ものすごく有意義な時間を経験させていただきました!
小嶋景人 / 株式会社メンバーズ

【日本版第2回参加者】

Business Sideの方にこそお勧めします! Hands-onに徹した研修を通して、「Data Scientistに頼らずとも自分でスピーディにデータを処理して可視化し、Business Decisionに活用できる」という確信が持てました。
マーケティング / ソフトウエアベンダー

【日本版第2回参加者】

データ分析の経験がない立場で参加しましたが、 業界の背景から最新の理論を使った分析まで、幅広くカバーされており、 初心者の入口としても最適なトレーニングだと感じました。 実際に手を使って分析したり、実務者の生の声を聞く機会もあり、学んだことを実践したり、実務を想像したりできる点もエキサイティングでした。
メディカルソリューション / 総合医療メディア

【日本版第2回参加者】

通常レベルのPC知識でも十分理解できました。また最前線で携わっている方の実情に触れる良い機会にもなりました。
日下部 交右 / イオンディライト株式会社

【日本版第2回参加者】

データ分析の基礎知識から実データを使った分析手法の実践まで経験でき、期待以上のトレーニングでした。 そして何よりも素晴らしいのは講義がわかりやすいことです!
ソリューションエンジニア / ビックデータ基盤ソフトウェアメーカー

【日本版第2回参加者】

日本でデータ・サイエンスを体系的に学ぶ機会はまだ限られていますが、データ・サイエンスの基礎を実践的に学べるだけでなく、シリコン・バレーで展開される最新の議論に触れる貴重な機会でした。
大学教員

【日本版第2回参加者】

ブートキャンプでは、プロが生のデータをどう扱ってビジネスに繋げるのかを教えてくれます。私は学生なので、知る機会の無かった新しい世界を見ることができました!
学生 / 明治大学 

【日本版第2回参加者】

このブートキャンプトレーニングは私に、統計学の魅力、アルゴリズムのパワー、そして何より、それらを活用して結果を導き出すことの楽しさを教えてくれました。
石迫龍司 ソリューション・コンサルタント/ アドビ・システム

【日本版第1回参加者】

週末フル4日間でExploratoryのトレーニング。データをラングることからスタートし、データを絡み合わせて、ビジュアライズからの予測や回帰の分析手法が簡単に。Wow!の連続。

Nishida CEO直伝の低音のNice Voiceに、シリコンバレー仕込みの軽快なトークで、小難しい統計の知識も解説も理解しやすく。クラスター分析したなら、きっと近い属性の仲間との出会いに素直に楽しかったw

統計学やデータ分析に関心・興味がある方にはおすすめです。

大藤隆徳 取締役 / D-Direction (ダイレクトマーケティング)

【日本版第1回参加者】

特に、R初心者だけどデータ分析しないといけないビジネスユーザーの方におすすめします。シリコンバレー発の、データ分析に関する全体像を正確に理解できるブートキャンプです。
うのさわえいじ / v−commerce経営企画

【日本版第1回参加者】

私は非開発者ですが、この講座でデータ分析の基礎から最新の機械学習までをノンプログラミングで学べました!実践的なワークを交えているので、明日からのデータ分析に使える技術が得られた点が良かったです!
マーケティンググループ・リーダー / BtoBマーケティング会社

【日本版第1回参加者】

This is an amazing training that focuses on how to analyze data with various methodologies without a need of the programming. (これは、プログラミングを必要とせずにさまざまな方法論を使用してデータを分析する方法に焦点を当てた、すばらしいトレーニングです。)
ビジネスアナリスト / 米Facebook社勤務

【US版参加者】

Using Exploratory as a powerful standalone R GUI-based tool is a huge breakthrough for learning Data Science effectively. (強力なスタンドアロンのR GUIベースのツールであるExploratoryを使用することは、データサイエンスを効果的に学習するための大きなブレークスルーです。)
大学教授 / カリフォルニア大学バークレー校

【US版参加者】

I really enjoyed the training. Rather than spending time learning all the details of the R system, I can just start using the power of R to answer my questions about my data. (トレーニングは本当に楽しかったです。 R言語の詳細を学ぶのに時間を費やすのではなく、私のデータに関する私の質問に答えるためにRを使い始めることがすぐにできます。)
シニアデータアナリスト / 米コンサルティング会社勤務

【US版参加者】

Loading